
NASA-TM-II2652

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

ARC 275 (Rev Mar 93)

RNS-90-002

Experiences with the Fair Share Scheduler

Toby Harness

NASA Ames Research Center

Numerical Aerodynamic Simulation Systems Division

Moffett Field, California

Abstract

The intent, function, and configuration of the Fair

Share scheduler is examined. System usage charac-
teristics of the Numerical Aerodynamic Simulation

(NAS) Cray-2 and Cray Y-MP and the manner in

which Share was employed to address the more re-

fractory aspects of this usage are discussed. Some

modifications to the system as provided by Cray Re-

search (CRI) were necessary to further our goals for

Share. Comments are provided on some of the bugs
and misfeatures encountered.

Introduction

The Fair Share Scheduler (Share) is a process sched-
uler that runs "on top" of UNIX's I scheduler in an

attempt to distribute system resources more equi-

tably. It does this by adjusting the scheduling pri-
orities of all processes on a regular interval, based

on recent resource usage and entitlement of their

owner. Thus Share attempts to be fair to users, not

processes or jobs. User entitlement to system re-
sources is set by the system administrator based on

a hierarchical model that permits resource alloca-

tion at each level of the hierarchy.

Share was originally developed at the University of

Sydney and the University of New South Wales in

the early 1980s to better support interactive use of

DEC VAX 11/780s running AUSAM, a local version

of UNIX [1]. Share is currently a product of Softway

Pty Limited as part of their Share resource manage-

ment system, previously known as Limits [2]. Since
the 5.0 release of UNICOS 2, Cray Research has pro-

vided its implementation of Share [3]. In most re-

1UNIX is a registered trademark of AT&T.
2UNICOS is a registered trademark of Cray Research, Inc.

spects it is very similar to the version described in

the January 1988 issue of the Communications of
lhe ACM [1].

How Share Works

Resource Groups

Resource groups are used to allocate system re-
sources, and are unrelated to traditional UNIX

groups. An allocation of system resources is referred

to as a share. All users must be members of exactly
one resource group.

A resource group may be a member of a parent re-

source group, and so on in turn, up to the system-

wide resource group, known as Root (note the capi-

tal letter). As one might expect, this resource group
has the entire system allocated to it. This forms a

Share tree, with Root as the base of the tree, other

resource groups as intermediate nodes, and users as

leaves. See Figure 2 for an example. Every pro-
cess in the system is attached to a node of this

tree. These nodes are referred to by the name of

the kernel data structure used to represent them,
limit nodes, or lnodes.

Shares

Both resource groups and users are allocated shares

from within their parent resource group. The num-
ber of shares they are allocated in relation to the
number of shares other members within their re-

source group are allocated determines the percent-
age of their parent's share to which they are enti-
tled. Note that between two members of the same

resource group it is the ratio of shares that is sig-

nificant,not thenumbersof shares.Forexample,
withina givenresourcegroup,allocatinga privi-
legeduser500shareswheneveryotheruserisallo-
cated100is thesameasgivingthisuser50shares
if everyotheruserhasonly10.

Becausesharesareallocatedat theresourcegroup
level,sharescannotbedirectlycomparedbetween
membersofdifferentresourcegroups.A comparison
canonlybedonewithnormalizedshares.

Sharesareneverconsumed,butratherremaincon-
stantuntil thesystemadministratorchangesthem.

Usage

Since shares are not consumed, there needs to be

some measure of how much of the system a given
user or resource group has used in order to make

sure everyone is getting their fair share. This mea-
sure is called usage. It is a unitless number that

is calculated from the amount of CPU time used,

memory used, blocks of I/O read or written, and

number of system calls made by all processes at-
tached to a given lnode.

Resource use is exponentially decayed over time,

with a configurable half-life. The length of the usage
half-life has the greatest impact on the users of the

system. Long half-lives - more than a few hours

- favor constant resource consumption, typical of
batch processing, and short half-lives - less than an

hour or so - favor "burst" consumption that is more

typical of interactive processing. See Figure 1.

Usage, like shares, is a relative term: its absolute

magnitude is not as significant as its normalized

value in comparison to the usage accumulated by
other users and resource groups. There is a con-

figurable maximum usage parameter that prevents
very large usages from distorting Share calculations.

Priorities

Share attempts to minimize the disparity between

usage and share entitlement by reducing the prior-

ities (i.e., increasing the numerical value) of pro-
cesses associated with users with higher normalized

usage than normalized share. This is Share's only
interaction with the low level process scheduler.

t : I

4.00 -

3.60 -

3.20-

7-4O

1.2{}

0.80

0.40

0._ -

I

0 2 4 6 8 10

Figure 1: An example of usage decay. The half-life
is two hours.

Competition

Share requires competition to be fair. A user or re-

source group that is entitled to a percentage of the
system may not receive its full entitlement if it does

not generate sufficient demand. Since unused sys-
tem resources are never wasted, a user or resource

group is allowed to use more than its share of the

system if other users or resource groups are not us-
ing all that they are entitled to.

The idle processes are attached to the Idle resource

group, which has zero shares allocated to it, and

only run when there is insufficient global demand.

Readers are directed to [1] for a more detailed dis-

cussion of the workings of Share.

P

System Usage Characteristics

In an attempt to circumvent the Network Queueing

System (NQS) in order to get quicker turnaround,

NAS users were simulating batch processing by
chaining together interactive runs. These "inter-

active batch" jobs consumed large amounts of CPU

time and overcommitted main memory, causing ex-

cessive daytime swapping. Only a few recalcitrant

users were responsible for the bulk of this type of

processing.The CPUcyclesconsumedby these
jobs,plustheoverheadof theadditionalswapping,
furtherslowedNQSturnaround.Thisnegativefeed-
backloopnotonlyovercommittedsystemresources
duringprimetime,but alsofrequentlyresultedin
systemunderutilizationduringoffhoursduetothe
lownumberofjobsplacedin theNQSqueues.

This undesirablesituationwaspossiblein part
because of the liberal interactive limits we en-

force. Current limits are 600 seconds of CPU time

and 20 Megawords of memory per process on the

Cray 2/4256, and 600 seconds and 10 Megawords

on the Cray Y-MP/8128. These limits are neces-

sary to support the type of intrinsically interactive

applications we consider important, such as plot3d,

and we sought alternatives to lowering them.

Share Configuration

Share was selected as a mechanism to distribute

system resources more equitably among interactive

users and to provide a guaranteed percentage of
CPU cycles to NQS jobs. The NQS scheduler could

then manage a more predictable system. To accom-

plish this, Share was configured to support different

resource allocations for interactive and batch pro-

cesses, and suitable modifications to NQS (8 addi-
tional lines of code) were made so that NQS could
properly interact with Share.

Hierarchy

I Root 1

da .o. I I ba h

sys mssq nqs userluser2 user3... idle

Figure 2: Share Hierarchy

We initially created two resource groups, batch and
interact, directly under Root. We later added the

daemon resource group to prevent system process
from taking 100% of the machine in the event of

:ierious problems. See Figure 2.

All system processes, except for the Share daemon

itself and the idle processes, run under daemon,

which is allocated a 90% percent share. This is

to ensure these processes receive the resources they
need. All interactive user processes run under in-

teract, with an equal share. All batch processes -
those started by NQS - run under the batch resource

group as if initiated by a pseudo-user created for this

purpose called nqs.

The nqs pseudo-user is used only for Share calcula-

tions. In particular, the user, group, and account

identifiers of the batch processes are unchanged.
This is done by attaching NQS jobs to the nqs In-
ode.

This means that users do not incur any of the share

charges accumulated by their batch jobs. User's

interactive sessions are thus unaffected by the re-

source consumption of their batch jobs.

Because all NQS jobs (actually, their constituent

processes) are connected to the same lnode, Share
does not differentiate between NQS jobs. Thus

Share's role is largely relegated to mediating be-
tween NQS processes en masse and individual in-

teractive processes. (The daemon and Idle resource

groups do not normally consume enough system re-

sources to warrant consideration.)

Share could be made to differentiate between NQS

jobs by having NQS attach each job to a unique

"transient" Inode under batch instead of to nqs. 3
These transient lnodes could have shares assigned

to them based on either the priority of their origi-
nating NQS queue or the entitlement of their sub-

mitter, or some combination. We have not needed

to do this, as we assign equal shares to all users and

NQS queue nice values are sufficient for propagating
queue priorities.

Numbers

Despite the ability to charge for various types of"

resources, we have elected to charge only for CPU

ticks at the arbitrary rate of 100 (this is a unitless
number) per tick.

The only other resource we gave any serious consid-

eration to charging for was memory utilization. Ul-
timately we decided against this until we had more

experience with Share and could better predict its

impact. Since then we have become leery of having

3Suggested by Andrew Bettison on the ShareSIG mailing
list.

largememoryjobs with lowprioritiesin the sys-
tem. Notehoweverthat this chargeaccumulates
veryrapidly,andanynon-zerorateneedsto be3or
4 ordersof magnitudelessthantheCPU rate if it

is not to dominate the resource usage calculations.

We chose a large maximum usage of 1 x 109 so as

not to negatively impact nqs, which tends to run
up a large usage. Processes attached to lnodes with

usages close to the maximum usage are disfavored
by Share.

The usage half-life is 2 hours, which encourages load
spreading throughout the day. Figure 1 is an exam-

ple of this half-life's effect on the usage of an early
morning interactive user.

We also keep a tight reign on the maximum effec-

tive share an individual user can have (1.25 times

allocated share) and the minimum effective share

a resource group can receive (0.9 times allocated
share).

All these configuration parameters are setable via

shradmin; the entire configuration line as it appears
in our /ere/re is /etc/sbxadmin -F06 -R4 -K2h
-t;lO0 -Ulell -X1.25 -Y.9

to be convenient.

[Root]

sys mssq user1 I batch [I inm_act l idle

nqs userl user2 user3 ...

Figure 3: Modified Share Hierarchy

One benefit of the flexibility Share provides was

demonstrated during the acceptance period for a

memory upgrade to our Cray Y-MP. When high
priority acces to machine resources were needed for

running acceptance tests, batch and interact were

put under a production resource group, product, and

another new resource group, develop, was created.

See Figure 3. This resource group was given a large

share of the system, which allowed the acceptance

tests to run virtually unconstrained while permit-
ting production use to continue.

Shares

The only other significant numbers in our configu-
ration are the number of shares we allocate to batch

and interact. During prime time on the Y-MP these

are 70 and 30, respectively; they are 60 and 40, re-

spectively, on the Cray-2. On both systems these

are changed to 90 and 10 for non-prime time. Prime

time for us runs from 0400 to 1730, as we have users
on both coasts.

When shares are dynamically changed, it is impor-

tant to zero out usage for the effected lnodes (the

batch and interact resource groups in this case), oth-
erwise it may take some time for their usages to

adjust to the newly desired values. By discarding
past usages that were accumulated under a different

set of rules, all resource groups and users start out
evenly.

The magnitude of shares to allocate resource groups

and users should be large enough to permit a rea-

sonable granularity. Otherwise it may not be pos-
sible to adjust a share allocation to a desired value

without adjusting a potentially large number of al-

locations. We find picking values that sum to 100

Code Modifications

The modifications necessary to NQS to support this
type of application of Share are trivial. All that is

necessary is to attach the newly created or restarted
job to the nqs lnode instead of the owner's lnode.

This is done with the setshares library call in

nqs_spawn, c for restarted checkpointed jobs and in

nqs._reqser, c for new jobs. As attaching a process

to an lnode is a privileged operation, this must oc-

cur prior to changing the uid of the new process
from super user to the owner's.

A mechanism for changing the shares and usage fo_

a resource group or user without rebooting the sys-

tem was not provided by CRI. We wrote a general
purpose tool that uses the new limits system call
to dynamically alter the fields of an active lnode.

We then added a cron entry to invoke this at the

appropriate times to switch between prime and non-
prime periods.

Finally, we altered su to attach a successfully cre-

ated root process to the Root lnode, instead of leav-
ing it attached to the invoker's lnode.

/

Bugs and Misfeatures

We consider the supplied behavior of su to be in-

correct. A critical system process that is started or

restarted inadvertently attached to a regular user's

lnode may not get as much system resources as it

needs, and what it does get will be added to the
invoker's resource use.

CRI does provide the shrlimi_ command for at-

taching a new process to a different lnode. How-

ever, this had a simple bug (actually in sel;shares)

that kept it from attaching to root's lnode (which

is Root.) Although this was easily fixed, we thought

it safer to modify su than to rely on our privileged
users to always remember to use shrlimit.

Although the system "autoconfigures" Root, Idle is

not similarly set up. If Idle is not properly con-

figured with zero shares, the idle processes will be
inappropriately scheduled to run.

Resource groups appear in/etc/passwd. Although

not users, resource groups have a udb entry, and
udbgen dutifully includes them in/etc/passwd and

/etc/group.

The default number of shares udbgen assigns to a
user is zero. This is not a particularly useful alloca-
tion.

A user may belong to only one resource group. It
would be useful to be able to enroll a user in more

than one resource group, and provide a means to

switch between them. Only one resource group
would be active at a time. This would work much

like the old newgrp system.

Perhaps the biggest problem with Share as dis-
tributed by CRI is the documentation. The manual

pages in particular are written in a confusing style
that uses inconsistent - and sometimes incorrect -

terminology. The System Administration Guides

are better, but still fail to define some important

terms. Documentation for the libshare library
routines is completely missing.

scheduler would impact them. Although most users
were unfamiliar with the functional parameters and

behavior of the low level process scheduler that they
had been using for years, many felt they needed to

understand the workings of Share.

One year after turning it on, most users are aware

that Share is running, but remain unfamiliar with

how it works. Interactive graphics users who had

all but given up on daytime use of the systems

are pleased with their improved response. NQS
throughput is still not as high as most users would

like, but outside of periods of low demand for the

interactive share of the system, "interactive batch"

users have largely switched back to using NQS for
long running background jobs.

Conclusion

In general, the intergration of Share into UNICOS

appears not to have been well examined by CRI.
However, our experiences with the Fair Share sched-

uler, once suitably configured, have been very sat-

isfactory. Swapping was reduced dramatically, and

NQS throughput improved and became more pre-

dictable. In addition to solving the immediate prob-

lems in an elegant and egalitarian manner, Share

provided us with new functionality and flexibility.

References

[1] Kay, J., and Lauder, P. A Fair Share Scheduler.

Communications of the ACM vol. 31, 1 (Jan.
1988), 44-55.

[2] Bettison, Andrew, et al. Limits -- A System for

UNIX Resource Administration. Proceedings of

Supercomputing '89 (Nov. 1989), 686-692.

[3] Cray Research, Inc. UNICOS System Admini_

trator's Guide for CRAY-2 Computer Systems
(SG-2019 C-01) 6-12 - 6-25.

User Acceptance

When we enabled Share in the above configuration
in December of 1989, there was some confusion and

consideration among our users about how the new

p

